Shock-induced mixing of a light-gas cylinder
نویسنده
چکیده
Experiments have been carried out to quantify the mixing induced by the interaction of a weak shock wave with a cylindrical volume of a gas (helium) that is lighter than its surroundings (air). In these experiments a round laminar jet was used to produce the light-gas cylinder, and planar laser-induced fluorescence (PLIF) , utilizing a fluorescent tracer (biacetyl) mixed with the helium, was used to visualize the flow. These techniques provide a higher quality of flow visualization than that obtained in previous investigations. In addition, the PLIF technique could be used for the measurement of species concentration. The distortion of the helium cylinder produced by the passing shock wave was found to be similar to that displayed by images from previous experimental and computational investigations. The downstream displacement of several points on the boundary of the light-gas cylinder are measured and agree reasonably well with the results of earlier experimental and theoretical studies as well. Because the mixing process causes the helium originally contained within the cylinder to be dispersed into the surrounding air, the PLIF image area inside the contour at one half the maximum concentration of the fluorescent tracer decreases as the two gases mixed. The change in this area is used as a measure of the mixing rate, and it is found that the time rate of change of this area divided by the area of the initial jet is approximately -0.7 x lo3 s-l.
منابع مشابه
An experimental investigation of mixing mechanisms in shock-accelerated flow
An experimental investigation of mixing mechanisms in a shock-induced instability flow is described. We obtain quantitative two-dimensional maps of the heavy-gas (SF6) concentration using planar laser-induced fluorescence for the case of a shockaccelerated cylinder of heavy gas in air. The instantaneous scalar dissipation rate, or mixing rate, χ , is estimated experimentally for the first time ...
متن کاملExperiments on Shock Induced Combustion of Isolated Regions of . Hydrogen-oxygen Mixtures
The interaction of a strong plane shock wave with isolated regions of gaseous mixtures was examined through a series of shock tube experiments. Specifically, the non-uniform mixtures examined consisted of a spherical bubble of pure hydrogen or hydrogen-oxygen mixtures surrounded by either an oxygen, nitrogen or air atmosphere. Shocks in the range of Mach 1.7 to 3.7 were studied. The interaction...
متن کاملInteraction of weak shock waves with cylindrical and spherical gas inhomogeneities
The interaction of a plane weak shock wave with a single discrete gaseous inhomogeneity is studied as a model of the mechanisms by which finite-amplitude waves in random media generate turbulence and intensify mixing. The experiments are treated as an example of the shock-induced Rayleigh-Taylor instability, or RichtmyerMeshkov instability, with large initial distortions of the gas interfaces. ...
متن کاملMixing of the Immiscible Liquids in the Entrance Region of a T-Type Chamber Using Laser Induced Fluorescence (LIF) Method
A Laser Induced Fluorescence technique (LIF) has been used to study the mixing behavior of two emerging streams in a T-Type mixing chamber. A mixing index on the basis of digital image light intensities is calculated. It has been shown that averaging over more than 800 images leads to a stable mixing index calculation. Moreover, the effect of equal and un-equal flow rates on the mixing behavior...
متن کاملA Control-Oriented Two-Zone Charge Mixing Model for HCCI Engines With Experimental Validation Using an Optical Engine
A control-oriented two-zone charge mixing model is developed to simplify, but to describe mixing of fresh charge and residual gas during the intake stroke. Engine valve timing has a strong influence on the realization of stable homogeneous charge compression ignition (HCCI), since it affects turbulent flow that promotes mixing of fresh charge and residual gas. Controlled auto-ignition of a HCCI...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005